The inherent selectivity of the antibody was combined with in-tube solid-phase microextraction by immobilization of the antibody into the fused silica capillary. A sensitive, selective, and reproducible immunoaffinity in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry (in-tube SPME/LC-MS) method was developed, and validated for fluoxetine analysis in human serum. Important factors in the optimization of in-tube SPME variables, as well as the evaluation of the immunoaffinity capillary capacity are discussed. The in-tube SPME/LC-MS method presented a limit of quantitation of 5.00 ng/mL, and precision intra-assays with RSDs lower than 5%. The response of the in-tube SPME/LC-MS method for fluoxetine was linear over a dynamic range from 5.00 to 50.00 ng/mL, with correlation coefficients better than 0.998. Based on analytical validation it was demonstrated that in-tube SPME/LC-MS method offers high sensitivity, selectivity, and enough reproducibility to permit the quantification of fluoxetine in human serum at therapeutic levels. Thus, the proposed SPME/LC method can be useful tool to determine fluoxetine serum concentrations in patients receiving therapeutic dosages.