In this study we report the development and optimization of two minigenome rescue systems for Nipah virus, a member of the Paramyxoviridae family. One is mediated by the T7 RNA polymerase supplied either by a constitutively expressing cell line or by transfection of expression plasmids and is thus independent from infection with a helper virus. The other approach is based on RNA polymerase I-driven transcription, a unique approach for paramyxovirus reverse genetics technology. Minigenome rescue was evaluated by reporter gene activities of (i) the two different minigenome transcription systems, (ii) genomic versus antigenomic-oriented minigenomes, (iii) different ratios of the viral protein expression plasmids, and (iv) time course experiments. The high efficiency and reliability of the established systems allowed for downscaling to 96-well plates. This served as a basis for the development of a high-throughput screening system for potential antivirals that target replication and transcription of Nipah virus without the need of high bio-containment. Using this system we were able to identify two compounds that reduced minigenome activity.