Soybean is one of the most important leguminous seed crops among the oil crops. Although the pathways for lipid biosynthesis have been identified, the factors that regulate the biosynthetic pathways at the transcriptional level are largely unknown. Here, we report our findings on the involvement of soybean Dof-type transcription factor genes in the regulation of the lipid content in soybean seeds. We identified 28 Dof-type transcription factor genes in soybean plants, and these genes displayed diverse patterns of expression in various organs. Seven flower/pod-specific genes and one constitutively expressed gene were further investigated. The proteins encoded by these seven genes were localized in the nucleus, and exhibited different abilities for transcriptional activation and DNA binding. Two genes, GmDof4 and GmDof11, were found to increase the content of total fatty acids and lipids in GmDof4 and GmDof11 transgenic Arabidopsis seeds. We also found that the 1000-seed weight was increased in the GmDof4 and GmDof11 transgenic plants. Using microarray and DNA binding analysis, we found that the two Dof-like proteins, GmDof4 and GmDof11, activated the acetyl CoA carboxylase gene and long-chain-acyl CoA synthetase gene, respectively, by direct binding to the cis-DNA elements in their promoter regions. In addition, both proteins downregulated the storage protein gene, CRA1, through direct binding. These results suggest that the two GmDof genes may augment the lipid content of soybean seeds by upregulating genes that are associated with the biosynthesis of fatty acids.