Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress

Eur J Immunol. 2007 Oct;37(10):2856-67. doi: 10.1002/eji.200636421.

Abstract

Fever is associated with improved survival during infection in endothermic and ectothermic species although the protective mechanisms are largely undefined. Previous studies indicate that fever-range thermal stress increases the binding activity of the L-selectin homing receptor in human or mouse leukocytes, thereby promoting trafficking to lymphoid tissues across high endothelial venules (HEV). Here, we examined the evolutionary conservation of thermal regulation of L-selectin-like adhesion. Leukocytes from animals representing four taxa of vertebrates (mammals, avians, amphibians, teleosts) were shown to mediate L-selectin-like adhesion under shear to MECA-79-reactive ligands on mouse HEV in cross-species in vitro adherence assays. L-selectin-like binding activity was markedly increased by fever-range thermal stress in leukocytes of all species examined. Comparable increases in L-selectin-like adhesion were induced by thermal stress, IL-6, or the IL-6/soluble IL-6 receptor fusion protein, hyper-IL-6. Analysis of the molecular basis of thermal regulation of L-selectin-like adhesion identified a common IL-6 trans-signaling mechanism in endotherms and ectotherms that resulted in activation of JAK/STAT signaling and was inhibited by IL-6 neutralizing antibodies or recombinant soluble gp130. Conservation of IL-6-dependent mechanisms controlling L-selectin adhesion over hundreds of millions of years of vertebrate evolution strongly suggests that this is a beneficial focal point regulating immune surveillance during febrile inflammatory responses.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cattle
  • Cell Adhesion / immunology
  • Cells, Cultured
  • Conserved Sequence
  • Dogs
  • Evolution, Molecular
  • Fever / immunology
  • Fever / metabolism*
  • Fever / pathology
  • Humans
  • Interleukin-6 / physiology*
  • L-Selectin / genetics
  • L-Selectin / metabolism*
  • L-Selectin / physiology
  • Leukocytes / immunology
  • Leukocytes / metabolism
  • Leukocytes / pathology
  • Mice
  • Protein Binding / immunology
  • Rabbits
  • Rats
  • Signal Transduction / physiology*
  • Stress, Physiological / immunology*
  • Stress, Physiological / metabolism*
  • Stress, Physiological / pathology

Substances

  • IL6 protein, human
  • Interleukin-6
  • L-Selectin