We propose an alternating optimization framework for the joint design of excitation k-space trajectory and RF pulses for small-tip-angle parallel excitation. Using Bloch simulations, we show that compared with conventional designs with predetermined trajectories, joint designs can often excite target patterns with improved accuracy and reduced total integrated pulse power, particularly at high reduction factors. These benefits come at a modest increase in computational time.
Copyright (c) 2007 Wiley-Liss, Inc.