Multidrug transporters such as P-glycoprotein require considerable inter-domain communication to couple energy utilization with substrate translocation. Elucidation of the regions or residues involved in these communication pathways is a key step in the eventual molecular description of multidrug transport. We used cysteine-scanning mutagenesis to probe the functional involvement of residues along the cytoplasmic half of transmembrane segment 6 (TM6) and its extension toward the nucleotide binding domain. The mutation of one residue (G346C) in this segment adversely affected drug transport in cells. Further investigation using purified protein revealed that the underlying biochemical effect was a reduction in basal ATP hydrolysis. This G346C mutation also affected the stimulation of ATPase activity in a drug dependent manner but had no effect on drug binding, ATP binding, or ADP release. Homology modeling of P-glycoprotein indicated that the G346C mutation caused a steric interaction between TM5 and TM6, thereby precluding a helical movement required to support ATP hydrolysis.