At the time of Golgi and Cajal's reception of the Nobel Prize in 1906 most scientists had accepted the notion that neurons are independent units. Although neuroscientists today still believe that neurons are independent anatomical units, functionally, it is thought that some sort of population coding occurs. Throughout this essay, we provide evidence that suggests that populations of neurons can code information through the synchronization of their responses. This synchronization occurs at several levels in the brain. Whereas spike synchrony refers to the correlation between spikes of different neurons' spike trains, oscillatory synchrony refers to the synchronization of oscillatory responses, generally among large groups of neurons. In the first section of this essay we describe the dependence of the brain's developmental processes on synchronous firing and how these processes form a brain that supports and is sensitive to synchronous spikes. Data are then presented that suggest that spike and oscillatory synchrony may serve as useful neural codes. Examples from sensory (auditory, olfactory and somatosensory), motor and higher cognitive (attention, memory) systems are then presented to illustrate potential roles for these synchronous codes in normal brain function. Results from these studies collectively suggest that spike synchrony in sensory and motor systems may provide detail information not available from changes in firing rate. Oscillatory synchrony, on the other hand, may be globally involved in the coordination of long-distance neuronal communication during higher cognitive processes. These concepts represent a dramatic shift in direction since the times of Golgi and Cajal.