The propagation of signals from synapses and dendrites to the nucleus is crucial for long lasting adaptive changes in the nervous system. The ERK-MAPK pathway can link neuronal activity and cell surface receptor activation to the regulation of gene transcription, and it is often considered the principal mediator of synapse-to-nucleus communication in late-phase plasticity and learning. However, the mechanisms underlying ERK1/2 trafficking in dendrites and nuclear translocation in neurons remain to be determined leaving it unclear whether ERK1/2 activated at the synapse can contribute to nuclear signaling and transcriptional regulation. Using the photobleachable and photoactivable fluorescent tag Dronpa on ERK1 and ERK2, we show here that ERK1/2 translocation to the nucleus of hippocampal neurons is induced by the stimulation of N-methyl-D-aspartate receptors or TrkB stimulation and is apparently mediated by facilitated diffusion. In contrast, ERK1/2 trafficking within dendrites is not signal-regulated and is mediated by passive diffusion. Within dendrites, the reach of a locally activated pool of ERK1/2 is very limited and follows an exponential decay with distance. These results indicate that successful signal propagation to the nucleus by the ERK-MAPK pathway depends on the distance of the nucleus from the site of ERK1/2 activation. ERK1/2 activated within or near the soma may rapidly reach the nucleus to induce gene expression, whereas ERK1/2 activated at distal synapses may only contribute to local signaling.