The value of a three-dimensional (3D) imaging system was evaluated using a newly developed workstation. Fifteen knee joints with meniscal tears confirmed by arthroscopic examinations underwent 3D magnetic resonance (MR) imaging. These 3D data sets were processed into 3D display by multiplanar reformation (MPR) and the volume rendering technique, and the features of the meniscal tears were compared with those on conventional two-dimensional (2D) MR images. The 3D images with MPR provided higher detectability and more descriptive delineation of the meniscal tears than the 2D images. With its powerful image processing capacity, the workstation facilitated high-speed, high-quality 3D display and provided precise views of meniscal cleavages for the planning of surgical treatment. The independent processing system permitted efficient throughput of the MR data and eliminated wasteful filming processes.