Plantaricin A (PlnA) is a 26-mer peptide pheromone with membrane-permeabilizing, strain-specific antibacterial activity, produced by Lactobacillus plantarum C11. We investigated the membrane-permeabilizing effects of PlnA on cultured cancerous and normal rat anterior pituitary cells using patch-clamp techniques and microfluorometry (fura-2). Cancerous cells displayed massive permeabilization within 5 s after exposure to 10-100 microM PlnA. The membrane depolarized to nearly 0 mV, and the membrane resistance decreased to a mere fraction of the initial value after less than 1 min. In outside-out membrane patches, 10 microM PlnA induced membrane currents reversing at 0 mV, which is compatible with an unspecific conductance increase. The D and L forms of the peptide had similar potency, indicating a nonchiral mechanism for the membrane-permeabilizing effect. Surprisingly, inside-out patches were insensitive to 1 mM PlnA. Primary cultures of normal rat anterior pituitary cells were also insensitive to the peptide. Thus, PlnA differentiates between plasma membranes and membrane leaflets. Microfluorometric recordings of [Ca(2+)](i) and cytosolic concentration of fluorochrome verified the rapid permeabilizing effect of PlnA on cancerous cells and the insensitivity of normal pituitary cells.