Loss of programmed cell death pathways is one of the features of malignancy that complicate the response of cancer cells to a therapy. Activation of alternative cell death pathways offers a promising approach to enhance efficiency of cancer chemotherapy. We analysed programmed cell death pathways of v-myb-transformed BM2 monoblasts induced by arsenic trioxide, cycloheximide and camptothecin with U937 promonocytes as a reference cell line. We show that induced death of BM2 cells is not executed by caspases but rather by alternative cell death pathways. Camptothecin induces the lysosome-dependent cell death, arsenic trioxide induces autophagy, and most of cycloheximide-treated BM2 cells die by necrosis. The fact that alternative cell death pathways can be switched in cells with defects in activation and/or function of caspases suggests that understanding and targeting of these pathways could improve therapy of cancer cells suffering from defective apoptosis.