Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth

J Biol Chem. 1991 Dec 25;266(36):24690-7.

Abstract

The intracellular Ca2+ pump inhibitor, thapsigargin, added to DDT1MF-2 smooth muscle cells in culture, irreversibly inhibited accumulation of Ca2+ within cells, permanently emptied the inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pool, and simultaneously induced profound alteration of cell growth. After only a brief (30-min) treatment of cultured cells with 3 microM thapsigargin followed by extensive washing, the total releasable InsP3-sensitive Ca2+ pool remained entirely empty, even after 7 days of culture without thapsigargin. After thapsigargin treatment, cells retained viability, usual morphology, and normal mitochondrial function. Despite the otherwise normal appearance and function of thapsigargin-treated cells, cell division was completely blocked by thapsigargin. DNA synthesis was completely inhibited when thapsigargin was added immediately after passaging, but was suppressed only slowly (4-6 h) when added to rapidly synthesizing cells (24 h after passaging). Protein synthesis was reduced by approximately 70% in thapsigargin-treated cells. The sensitivity of thapsigargin-mediated inhibition of cell division, DNA synthesis, protein synthesis, and Ca(2+)-pumping activity were all similar with the EC50 values for thapsigargin in each case being close to 10 nM. Upon application to DDT1MF-2 cells, thapsigargin transiently increased resting cytosolic Ca2+ (0.15 microM) to a peak of 0.3 microM within 50 s; thereafter, free Ca2+ declined to 0.2 microM by 150 s and continued to slowly decline toward resting levels. Cells treated with thapsigargin for 1-72 h in culture displayed normal resting cytosolic Ca2+ levels. However, application of thapsigargin or epinephrine to such cells resulted in no change in the intracellular Ca2+, indicating that the internal Ca2+ pool remained completely empty. These results suggest that emptying of Ca2+ from intracellular thapsigargin-sensitive Ca(2+)-pumping pools induces profound alteration of cell proliferation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Cell Division / drug effects
  • Cell Line
  • Cricetinae
  • DNA / biosynthesis
  • DNA / drug effects
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism
  • Inositol 1,4,5-Trisphosphate / metabolism
  • Methionine / metabolism
  • Muscles / drug effects*
  • Muscles / metabolism
  • Terpenes / pharmacology*
  • Thapsigargin
  • Thymidine / metabolism

Substances

  • Terpenes
  • Thapsigargin
  • Inositol 1,4,5-Trisphosphate
  • DNA
  • Methionine
  • Calcium
  • Thymidine