Deuterium isotope effect on the atomic alignment dependence in the reaction of oriented Ar (3P2) with (CH3CN)2 and (CD3CN)2 dimers

J Phys Chem A. 2007 Aug 2;111(30):6945-51. doi: 10.1021/jp0727446. Epub 2007 Jul 4.

Abstract

The effect of atomic alignment on CN (B2Sigma+) formation has been studied in the reaction of oriented Ar (3P2) with (CX3CN)2 (X = H, D). The reaction cross-section for each magnetic M'(J) substate in the collision frame sigma|M'(J)|(H(D),d) relative to the cross-section sigma0(H,m) in the CH(3)CN reaction was determined to be sigma0(H,d)/sigma|1|(H,d)/sigma|2|(H,d)/sigma0(D,d)/sigma|1|(D,d):/sigma|2|(D,d)= 0.87/1.00/0.98/1.58/1.93/1.78. A notable deuterium isotope effect was observed. In contrast with the monomer reactions, a significant decrease of sigma0(H(D),d) relative to the other cross-sections of sigma|M'(J)|(H(D),d) was observed.