The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve resources.