A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles phi and psi characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(phi,psi) surfaces obtained for the model peptides For-(L-Ala)(n)-NH(2), with n = 1, 3, and 5, resulted in so-called empirical ICS(phi,psi) surfaces for all major nuclei of the 20 naturally occurring alpha-amino acids. Out of the many empirical surfaces determined, it is the 13C(alpha)-1H(alpha) ICS(phi,psi) surface which seems to be most promising for identifying major secondary structure types, alpha-helix, beta-strand, left-handed helix (alpha(D)), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring alpha-amino acids. Two-dimensional empirical 13C(alpha)-1H(alpha) ICS(phi,psi) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.