Previous studies have shown that estrogen treatment protects the heart from reperfusion injury. The adverse effects of long-term estrogen treatment limit its clinical use and emphasize the need for the development of specific pharmacological interventions such as pathway-selective estrogen receptor (ER) ligands. Pathway-selective ER ligands are compounds that retain estrogen's anti-inflammatory ability, but they are devoid of conventional estrogenic action. In the present study, the pathway-selective ER ligand WAY-169916 was assessed for its cardioprotective potential in an in vivo model of ischemia-reperfusion injury. Anesthetized, ovariectomized rabbits were administered WAY-169916 (1 mg/kg), 17beta-estradiol (E2; 20 microg/rabbit), or vehicle intravenously 30 minutes before a 30-minute occlusion and 4 hours of reperfusion. Acute treatment with either WAY-169916 or E2 resulted in a decrease in infarct size, expressed as a percent of area at risk (WAY-169916, 21.2 +/- 3.3; P < 0.001 and E2, 18.8 +/- 1.7; P < 0.001) compared with vehicle 59.4 +/- 5.4). Pretreatment with estrogen receptor antagonist ICI 182,780 significantly limited the infarct size sparing effect of both WAY-169916 and E2 when expressed as a percent of the risk region (WAY 169916, 47.4 +/- 4.4; E2, 53.01 +/- 5.0). The results demonstrate that WAY-169916 protects the heart against ischemia-reperfusion injury through an ER-dependent mechanism.