The location of palladium nanoparticles on and inside the multiwalled carbon nanotubes channel is presented for the first time using electron tomography (3D TEM). The palladium salt precursor was rapidly sucked inside the nanotube channel by means of capillarity that is favored by the hydrophilic character of the tube wall after acidic treatment at low temperature. Statistical analysis indicates that the palladium particles were well dispersed and the palladium particle size was relatively homogeneous, ranging from 3 to 4 nm regardless of their location within the nanotube, within the resolution limit of the technique for our experimental conditions, i.e., about 2 nm. Three-dimensional TEM analysis also revealed that introduction of foreign elements inside the tube channel is strongly influenced by the diameter of the tube inner channel, i.e., easy filling seems to occur with a tube channel >or=30 nm , whereas with tubes having a smaller channel (<15 nm), almost no filling by capillarity occurred leading to the deposition of the metal particles only on the outer wall of the tube.