Commonly used brain templates are based on adults' or children's brains. In this study, we create a neonatal brain template. This becomes necessary because of the pronounced differences not only in size but even more importantly in geometrical proportions of the brains of adults and children as compared to the ones of newborns. The template is created based on high resolution T1 magnetic resonance images of 7 individuals with gestational ages between 39 and 42 weeks at the dates of examination. As usual, the created template presents two characteristics in a single image: an average intensity and an average shape. The normalization process to map subjects to the same space is done using SPM2 (Statistical Parametric Mapping) and its deformation toolbox. It consists of two steps: an affine and a nonlinear registration for global and local alignments, respectively. The template was evaluated by (i) study of anatomical local deviations and (ii) amount of local deformations of brain tissues in normalized neonatal images. The extracted results were compared with the ones obtained by normalization using adult and pediatric templates. It was shown that the application of our neonatal brain template for alignment of neonatal images results in a pronounced increase in performance of the normalization procedure as indicated by reduction of deviation of anatomical equivalent structures. The neonatal atlas template is freely downloadable from http://www.u-picardie.fr/labo/GRAMFC.