Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus

Hippocampus. 2007;17(8):679-91. doi: 10.1002/hipo.20307.

Abstract

The human and rat hippocampus is highly susceptible to iron deficiency (ID) during the late fetal, early neonatal time period which is a peak time of regulated brain iron uptake and utilization. ID during this period alters cognitive development and is characterized by distinctive, long-term changes in hippocampal cellular growth and function. The fundamental processes underlying these changes are not entirely understood. In this study, ID-induced changes in expression of 25 genes implicated in iron metabolism, including cell growth and energy metabolism, dendrite morphogenesis, and synaptic connectivity were assessed from postnatal day (P) 7 to P65 in hippocampus. All 25 genes showed altered expression during the period of ID (P7, 15, and 30); 10 had changes on P65 after iron repletion. ID caused long-term diminished protein levels of four factors critical for hippocampal neuron differentiation and plasticity, including CamKII alpha, Fkbp1a (Fkbp12), Dlgh4 (PSD-95), and Vamp1 (Synaptobrevin-1). ID altered gene expression in the mammalian target of rapamycin (mTOR) pathway and in a gene network implicated in Alzheimer disease etiology. ID during late fetal and early postnatal life alters the levels and timing of expression of critical genes involved in hippocampal development and function. The study provides targets for future studies in elucidating molecular mechanisms underpinning iron's role in cognitive development and function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Size*
  • Disease Models, Animal
  • Energy Metabolism / physiology*
  • Female
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Developmental / drug effects
  • Gene Expression Regulation, Developmental / physiology*
  • Hippocampus / pathology*
  • Iron / pharmacology
  • Iron Deficiencies*
  • Iron Metabolism Disorders* / metabolism
  • Iron Metabolism Disorders* / pathology
  • Iron Metabolism Disorders* / physiopathology
  • Male
  • Neurons / cytology*
  • Oligonucleotide Array Sequence Analysis / methods
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Polymerase Chain Reaction / methods

Substances

  • Iron