Background and purpose: PET with (18)F-Misonidazole (FMISO-PET) is a non-invasive method for measuring tumor hypoxia. We analysed changes of FMISO-uptake during radiotherapy and their impact on patient outcome.
Materials and methods: Fourteen patients with HNC underwent repeated FMISO-PET prior to radiotherapy and after 30Gy. Dynamic and static PET-scans (2+4h p.i.) were acquired. FMISO-uptake was quantified by calculating standard uptake values (SUV) and tumor-muscle-ratios (TMR). Kinetic curve types representing tissue hypoxia were defined. Change of curve type was correlated with patient outcome.
Results: The mean SUV 4h p.i. and the TMR decreased significantly during radiotherapy. SUV decreased clearly in 12/14 patients, and increased in 2 patients. TMR decreased in 11 patients, and increased in 3 patients. Prior to radiotherapy, three different shapes of kinetic curve types indicative for the degree of hypoxia could be defined in 12/14 patients: (1) accumulation type (severe hypoxia (n=8)), (2) intermediate type (intermediate degree of hypoxia (n=3)), and (3) wash-out type (low degree of hypoxia (n=1)). Curve type changed towards a lower degree of hypoxia at 30Gy in all but 3 patients. In three patients curve type remained unchanged.
Conclusions: The changes in tumor FMISO-uptake during radiotherapy indicate radio-induced reoxygenation.