A metabonomic study was performed to investigate the biochemical perturbation of the serum samples from liver failure patients induced by hepatitis B virus (HBV; n=24) and control normal subjects (n=23). The serum metabonome was detected using gas chromatography-mass spectrometry (GC-MS) technique integrated with a commercial mass spectral library for the peak identification. After peak deconvolution, identification, and matching, the acquired GC-MS data were normalized and processed by principal component analysis (PCA) and canonical discriminant analysis (CDA). Specific changes in the metabolic composition of serum samples from patients including amino acids (AAs) and glucose were shown in GC-MS total ion current (TIC) chromatograms. The distinctive biochemical difference between the healthy subjects and liver failure patients was displayed by the pattern recognition methods. We also found that the liver failure patients with different degree of severity categorized as MELD (model for end-stage of liver diseases) could be clearly classified by the corresponding metabonomic data. In comparison, the current routine clinical indices cannot characterize the global phenotyping of liver failure. The result demonstrated that the GC-MS technique is an alternative tool for the characterization of the metabolic perturbation and the metabonomic study promises to provide an integrative criterion to evaluate the severity and the prognosis of liver diseases.