The topographic organization of the somatosensory representation in the deep layers of the cat superior colliculus was reexamined using methods previously used to examine the visuotopy in these layers. This technique identified the distribution of neurons in the superior colliculus that represent a designated region of the body surface (i.e., a dermal image), as well as assessed the differential distribution of deep layer neurons representing different body regions (e.g., face, forelimb, hindlimb, etc.). When the area of densest representation within a dermal image was considered, a well-ordered somatotopy was evident that was similar to the one previously described (Stein et al., '76: J. Neurophysiol. 39:401-419). Each region of the body surface, however, was represented within a surprisingly broad area of the deep layers, which often had considerable overlap with the representations of adjacent body regions. This organization was similar to that of the deep layer visuotopy and emphasizes that the representation of a peripheral stimulus is accomplished by the simultaneous activation of a large population of deep layer neurons. Furthermore, an examination of the convergence patterns on somatosensory-responsive neurons demonstrated that the somatotopy was formed primarily by multisensory neurons. These data indicate that the somatosensory representation is best considered as a component of a comprehensive multisensory functional unit that plays a critical role in effecting behavioral responses to a wide variety of stimuli.