Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs?

Biophys J. 2007 Sep 15;93(6):2118-28. doi: 10.1529/biophysj.107.106674. Epub 2007 May 4.

Abstract

This work investigates the interaction of carotenoid and chlorophyll triplet states in the peridinin-chlorophyll-a-protein (PCP) of Amphidinium carterae using step-scan Fourier transform infrared spectroscopy. We identify two carotenoid triplet state lifetimes of approximately 13 and approximately 42 mus in the spectral region between 1800 and 1100 cm(-1) after excitation of the 'blue' and 'red' peridinin (Per) conformers and the Q(y) of chlorophyll-a (Chl-a). The fast and slow decaying triplets exhibit different spectral signatures in the carbonyl region. The fast component generated at all excitation wavelengths is from a major conformer with a lactone stretching mode bleach at 1745 cm(-1). One (1720 cm(-1)) and two (1720 cm(-1) and 1741 cm(-1)) different Per conformers are observed for the slow component upon 670- and 530-480-nm excitation, respectively. The above result implies that (3)Per triplets are formed via two different pathways, corroborating and complementing visible triplet-singlet (T-S) spectra (Kleima et al., Biochemistry (2000), 39, 5184). Surprisingly, all difference spectra show that Per and Chl-a modes are simultaneously present during the (3)Per decay, implying significant involvement of (3)Chl-a in the (3)Per state. We suggest that this Per-Chl-a interaction via a delocalized triplet state lowers the (3)Per energy and thus provides a general, photoprotection mechanism for light-harvesting antenna complexes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biophysical Phenomena
  • Biophysics
  • Carotenoids / chemistry*
  • Dinoflagellida / chemistry
  • Light-Harvesting Protein Complexes / chemistry*
  • Models, Chemical
  • Molecular Structure
  • Photochemistry
  • Protozoan Proteins / chemistry*
  • Spectroscopy, Fourier Transform Infrared
  • Thermodynamics

Substances

  • Light-Harvesting Protein Complexes
  • Protozoan Proteins
  • peridinin chlorophyll-a protein, Dinophyceae
  • Carotenoids