Because the mechanisms of Helicobacter pylori-induced gastric injury are incompletely understood, we examined the hypothesis that H. pylori induces matrix metalloproteinase-1 (MMP-1) secretion, with potential to disrupt gastric stroma. We further tested the role of CagA, an H. pylori virulence factor, in MMP-1 secretion. Co-incubation of AGS cells with Tx30a, an H. pylori strain lacking the cagA virulence gene, stimulated MMP-1 secretion, confirming cagA-independent secretion. Co-incubation with strain 147C (cagA(+)) resulted in CagA translocation into AGS cells and increased MMP-1 secretion relative to Tx30a. Transfection of cells with the recombinant 147C cagA gene also induced MMP-1 secretion, indicating that CagA can independently stimulate MMP-1 secretion. Co-incubation with strain 147A, containing a cagA gene that lacks an EPIYA tyrosine phosphorylation motif, as well as transfection with 147A cagA, yielded an MMP-1 secretion intermediate between no treatment and 147C, indicating that CagA tyrosine phosphorylation regulates cellular signaling in this model system. H. pylori induced activation of the MAP kinase ERK, with CagA-independent (early) and dependent (later) components. MEK inhibitors UO126 and PD98059 inhibited both CagA-independent and -dependent MMP-1 secretion, whereas p38 inhibition enhanced MMP-1 secretion and ERK activation, suggesting p38 negative regulation of MMP-1 and ERK. These data indicate H. pylori effects on host epithelial MMP-1 expression via ERK, with p38 playing a potential regulatory role.