Background and purpose: We hypothesized that direct cervical investigation with Power M-Mode Doppler (PMD) combined with single-gate Doppler spectral analysis (SGDSA) using a 2-MHz pulsed-wave Doppler transducer would show reasonable accuracy parameters when compared with standard color-coded carotid duplex ultrasound (CDU).
Methods: We prospectively screened for cervical internal carotid artery (ICA) stenosis by direct observation using a 2 MHz PMD/SGDSA device. PMD identified the artery (location, depth, flow direction) and SGDSA assessed waveform; peak systolic, end diastolic, and mean flow velocities (MFV) of the common carotid artery; cervical ICA proximally and distally; and external carotid artery. Diagnostic accuracy was compared with concurrent carotid duplex ultrasound. The continuity principle was applied using the proximal/distal cervical ICA MFV ratio.
Results: We examined 456 vessels (228 patients). Using ICA proximally/ICA distally MFV ratio of 1.5 or greater or absence of ICA signature, for 40% to 59% or greater stenosis (including occlusions), sensitivity was 75.4%, specificity 99.8%, positive predictive value 97.7%, negative predictive value 96.6%, and accuracy 96.7%. For MFV ratio 1.6 or greater or absence of ICA signature and 60% to 79% or greater stenosis (including occlusions), sensitivity was 92.3%, specificity 98.1%, positive predictive value 81.8%, negative predictive value 99.3%, and accuracy 97.6%.
Conclusions: Use of combined PMD and SGDSA to directly observe the extracranial ICA is reasonably accurate compared with carotid duplex ultrasound. Using the MFV ratio of proximal/distal extracranial ICA improves accuracy parameters and provides a quick and effective bedside screen for ICA stenosis. This novel technique should be considered part of the standard PMD/transcranial Doppler examination.