Background: Transient, subclinical myocardial, renal, intestinal, and hepatic tissue injury and impaired homeostasis is detectable even in low-risk patients undergoing conventional cardiopulmonary bypass (CPB). Small extracorporeal closed circuits with low priming volumes and optimized perfusion have been developed to reduce deleterious effects of CPB.
Methods: A prospective, randomized trial was conducted in 49 patients undergoing elective coronary artery bypass graft surgery either with the use of a standard or mini-CPB system (Synergy). We determined early postoperative inflammatory response (leukocytosis, C-reactive protein, urine interleukin-6), platelet consumption and activation (urine thromboxane B2), proximal renal tubular injury (urine N-acetyl-glucosaminidase), and intestinal injury (intestinal fatty acid binding protein).
Results: In patients undergoing coronary artery bypass grafting with a mini-CPB system, we observed decreased priming volumes with subsequent attenuation of on-pump hemodilution, improved hemostatic status with reduced platelet consumption and platelet activation, decreased postoperative bleeding and minimized transfusion requirements. We also found reduced leukocytosis and decreased urinary interleukin-6. Levels of urine N-acetyl-glucosaminidase were on average threefold lower, and urinary intestinal fatty acid binding protein was 40% decreased in the patients on the mini-CPB system, as compared with standard CPB.
Conclusions: The use of the mini-CPB system during myocardial revascularization represents a viable nonpharmacologic strategy that can attenuate the alterations in the hemostatic system, reduce bleeding and transfusion requirements, decrease systemic inflammatory response, and reduce immediate postoperative renal and intestinal tissue injury.