Collagenase-1 is a protease expressed by active fibroblasts that is involved in remodeling of the extracellular matrix (ECM). In this study, we characterize the intracellular signaling mechanism of collagenase-1 production by IL-1alpha in subcultured normal fibroblasts (NF) from uninjured normal corneas, compared to that in repair wound fibroblasts (WF). In NF, collagenase-1 was induced specifically after the exogenous addition of IL-1alpha via activation of ERK and p38MAPK. Collagenase-1 expression was strongly suppressed upon treatment with either a MEK or p38MAPK inhibitor. In contrast, repair WF constitutively synthesized both IL-1alpha and collagenase-1. Combined treatment with both mitogen-activated protein kinase (MAPK) inhibitors dramatically reduced collagenase-1 synthesis, while individual MEK1 or p38 inhibitors weakly modulated the collagenase-1 level. The results indicate that both pathways are crucial in the regulation of collagenase-1 synthesis. Furthermore, an IL-1alpha receptor antagonist (IL-1ra) could not abolish constitutive collagenase-1 synthesis, even at high doses, suggesting that other cytokines/factors are additionally involved in this process. We propose that induction of collagenase-1 by IL-1alpha in both WF and NF depends on a unique combination of cell type-specific signaling pathways.