Activation of human CRTH2(+) CD4(+) T helper type 2 (Th2) cells with anti-CD3/anti-CD28 led to time-dependent production of prostaglandin D(2) (PGD(2)) which peaked at 8 hr. The production of PGD(2) was completely inhibited by cotreatment with the cyclo-oxygenase inhibitor diclofenac (10 microm) but was not affected by cotreatment with ramatroban, a dual antagonist of both the thromboxane-like prostanoid (TP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Supernatants from activated CRTH2(+) CD4(+) Th2 cells caused a concentration-dependent increase in the migration of naive CRTH2(+) CD4(+) Th2 cells compared to supernatants from unstimulated CRTH2(+) CD4(+) Th2 cells. The level of chemotactic activity peaked at 8 hr after activation, corresponding to the peak levels of PGD(2), but production of chemotactic activity was only partially inhibited by the cyclo-oxygenase inhibitor diclofenac. In contrast, ramatroban completely inhibited the chemotactic responses of naive Th2 cells to supernatants from activated CRTH2(+) CD4(+) Th2 cells collected up to 8 hr after activation, although supernatants collected 24 hr after activation were less sensitive to inhibition by ramatroban. The selective TP antagonist SQ29548 did not inhibit migration of Th2 cells, implicating CRTH2 in this response. These data suggest that CRTH2 plays an important paracrine role in mediating chemotactic activation of Th2 cells. Interestingly, although PGD(2) is produced from Th2 cells and contributes to this paracrine activation, it appears that additional CRTH2 agonist factors are also produced by activated Th2 cells and the production of these factors occurs independently of the cyclo-oxygenase pathway of the arachidonic acid metabolism.