Glutamate transporters (EAATs) are pivotal in mammalian synaptic transmission, tightly regulating synaptic levels of this excitatory neurotransmitter. In addition to coupled glutamate transport, the EAATs also show an uncoupled Cl(-) conductance, whose physiological importance has recently been demonstrated. Little is yet known about the molecular mechanism of chloride permeation. Here we show that Glt(Ph), a bacterial EAAT homolog whose structure has been determined, displays an uncoupled Cl(-) conductance that can determine the rate of substrate uptake. A mutation analogous to one known to specifically affect Cl(-) movement in EAAT1 has similar effects on Glt(Ph), suggesting that this protein is an excellent structural model for understanding Cl(-) permeation through the EAATs. We also observed an uncoupled Cl(-) conductance in another bacterial EAAT homolog but not in a homolog of the Na(+)/Cl(-)-coupled neurotransmitter transporters.