Early detection of HCC increases the potential for curative treatment and improves survival. To facilitate early detection of HCC, this study sought to identify novel diagnostic markers of HCC using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF/MS) ProteinChip technology. Serum samples were obtained from 153 patients with or without HCC, all of whom had been diagnosed with HCV-associated chronic liver disease. To identify proteins associated with HCC, serum samples were analyzed using SELDI-TOF/MS. We constructed an initial decision tree for the correct diagnosis of HCC using serum samples from patients with (n = 35) and without (n = 44) HCC. Six protein peaks were selected to construct a decision tree using this first group. The efficacy of the decision tree was then assessed using a second group of patients with (n = 29) and without (n = 33) HCC. The sensitivity and specificity of this decision tree for the diagnosis of HCC were 83% and 76%, respectively. For a third group, we analyzed sera from seven patients with HCC obtained before the diagnosis of HCC by ultrasonography (US) and from five patients free of HCC for the past 3 years. Use of these diagnostic markers predicted the diagnosis of HCC in six of these seven patients before HCC was clinically apparent without any false positives.
Conclusion: Serum profiling using the SELDI ProteinChip system is useful for the early detection and prediction of HCC in patients with chronic HCV infection.