We investigated the impact of one dimension (single reverse phase (RP) column) and two dimension (two different RP columns) chromatographic methods on SIM (MS) and multiple reaction monitoring (MRM; MS/MS) performance from human plasma. We find that MRM analysis is clearly preferable for 1-D applications; however, implementation of SIM detection in conjunction with 2-D separation technique resulted in an over 60-fold increase in analyte peak area and improved S/N compared to MRM for our analyte, human C-peptide. Implementation of a 2-D RP-RP technique with SIM detection is capable of eliminating matrix effects and greatly increases signal response and data quality. For two large peptides in complex biological samples, we found that a 2-D approach performed better than high quality sample preparation together with 1-D chromatography and MRM, even on a high-end mass spectrometer.