Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1

J Gen Physiol. 2007 Apr;129(4):331-44. doi: 10.1085/jgp.200609678.

Abstract

The neuronal glutamate transporter EAAC1 contains several conserved acidic amino acids in its transmembrane domain, which are possibly important in catalyzing transport and/or binding of co/countertransported cations. Here, we have studied the effects of neutralization by site-directed mutagenesis of three of these amino acid side chains, glutamate 373, aspartate 439, and aspartate 454, on the functional properties of the transporter. Transport was analyzed by whole-cell current recording from EAAC1-expressing mammalian cells after applying jumps in voltage, substrate, or cation concentration. Neutralization mutations in positions 373 and 454, although eliminating steady-state glutamate transport, have little effect on the kinetics and thermodynamics of Na(+) and glutamate binding, suggesting that these two positions do not constitute the sites of Na(+) and glutamate association with EAAC1. In contrast, the D439N mutation resulted in an approximately 10-fold decrease of apparent affinity of the glutamate-bound transporter form for Na(+), and an approximately 2,000-fold reduction in the rate of Na(+) binding, whereas the kinetics and thermodynamics of Na(+) binding to the glutamate-free transporter were almost unchanged compared to EAAC1(WT). Furthermore, the D439N mutation converted l-glutamate, THA, and PDC, which are activating substrates for the wild-type anion conductance, but not l-aspartate, into transient inhibitors of the EAAC1(D439) anion conductance. Activation of the anion conductance by l-glutamate was biphasic, allowing us to directly analyze binding of two of the three cotransported Na(+) ions as a function of time and [Na(+)]. The data can be explained with a model in which the D439N mutation results in a dramatic slowing of Na(+) binding and a reduced affinity of the substrate-bound EAAC1 for Na(+). We propose that the bound substrate controls the rate and the extent of Na(+) interaction with the transporter, depending on the amino acid side chain in position 439.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Anions / metabolism
  • Aspartic Acid / genetics
  • Cell Line
  • Conserved Sequence
  • Electrochemistry
  • Excitatory Amino Acid Transporter 3 / chemistry
  • Excitatory Amino Acid Transporter 3 / genetics*
  • Excitatory Amino Acid Transporter 3 / metabolism*
  • Glutamic Acid / metabolism
  • Humans
  • Kidney / cytology
  • Kinetics
  • Models, Chemical
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Patch-Clamp Techniques
  • Protein Structure, Tertiary
  • Rats
  • Sodium / metabolism*

Substances

  • Anions
  • Excitatory Amino Acid Transporter 3
  • Slc1a1 protein, rat
  • Aspartic Acid
  • Glutamic Acid
  • Sodium