Intramolecular charge transfer in a star-shaped oligoarylamine

J Phys Chem A. 2007 Apr 19;111(15):2951-6. doi: 10.1021/jp068917t. Epub 2007 Mar 27.

Abstract

The intervalence (IV) states of the monocationic states of the star-shaped nonaamine (3) and the triamine (2) as the branched unit in 3 have been examined by electrochemical, spectroelectrochemical, and temperature-dependent ESR spectroscopy. The oligoarylamines 2 and 3 were synthesized by using the successive palladium-catalyzed amination reaction. The redox property of 3 was basically the same as that of 2. However, there exist small potential differences between the first three one-electron oxidations for 3, indicating electronic coupling among the peripherally substituted triamine moieties via the central 1,3,5-benzenetriyl bridging unit. The observed ESR spectral pattern for 2+ remained unchanged over the measured temperature range. From the spectral simulation analyses, it was concluded that the unpaired electron in 2+ is fully delocalized over the whole molecule on the ESR time scale. This conclusion was corroborated by comparison of its optical absorption spectrum with TD-DFT-calculated results. In contrast, the peak-to-peak ESR line width (DeltaHPP) of 3+ exhibited temperature dependency. This behavior is ascribed to the thermally activated intramolecular charge transfer (ICT) among the branched three triamine moieties via the central 1,3,5-benzenetriyl bridging unit. From the spectral simulations based on the stochastic Liouville method, the first-order rate constant at each temperature and the parameters of the energy barrier for the ICT in 3+ were successfully determined.