Mitochondrial DNA (mtDNA) mutations may contribute to aging and age-related diseases. Previously, we reported that accumulation of mtDNA mutations is associated with age-related hearing loss in mice carrying a mutator allele of the mitochondrial Polg DNA polymerase. To elucidate the role of mtDNA mutations in the pathogenesis of age-related hearing loss or presbycusis, we performed large scale gene expression analysis to identify mtDNA mutation-responsive genes and biological process categories associated with mtDNA mutations by comparing the gene expression patterns of cochlear tissues from 9-month-old mitochondrial mutator and control mice. mtDNA mutations were associated with transcriptional alterations consistent with impairment of energy metabolism, induction of apoptosis, cytoskeletal dysfunction, and hearing dysfunction in the cochlea of aged mitochondrial mutator mice. TUNEL staining and caspase-3 immunostaining analysis demonstrated that the levels of apoptotic markers were significantly increased in the cochleae of mitochondrial mutator mice compared to age-matched controls. These observations support a new model of how mtDNA mutations impact cochlear function whereby accumulation of mtDNA mutations lead to mitochondrial dysfunction, an associated impairment of energy metabolism, and the induction of an apoptotic program. The data presented here provide the first global assessment at the molecular level of the pathogenesis of age-related disease in mitochondrial mutator mice and reveal previously unrecognized biological pathways associated with mtDNA mutations.