Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight

Brain. 2007 Mar;130(Pt 3):654-66. doi: 10.1093/brain/awm001.

Abstract

Very low birth weight (VLBW) children are at high risk of perinatal white matter injury, which, when subtle, may not be seen using conventional magnetic resonance imaging. The relationship between clinical findings and fractional anisotropy (FA) measurements in white matter of adolescents born prematurely with VLBW was studied in 34 subjects (age = 15 years, birth weight </=1500 g) and 47 age-matched controls born at term, who were examined both clinically and with diffusion tensor imaging (DTI). Perceptual and cognitive functions were evaluated by visual motor integration (VMI) with supplementary tests and sub-tests from WISC-III, motor function by movement ABC and Grooved Pegboard test and psychiatric symptoms by the schedule for affective disorders and schizophrenia for school-age children semistructured interview, the Autism Spectrum Screening Questionnaire and attention deficit hyperactivity disorder (ADHD) rating scale IV. Overall functioning was scored on the children's global assessment scale. DTI scans were performed for calculation of FA maps and areas of significant differences in mean FA values between subjects and controls were compared with their clinical data. The VLBW children had reduced FA values in the internal and external capsule, corpus callosum and superior, middle superior and inferior fasciculus. Within this group of children, visual motor and visual perceptual deficits were associated with low FA values in the external capsule, posterior part of the internal capsule and in the inferior fasciculus. Children with low IQ had low FA values in the external capsule and inferior and middle superior fasciculus. Fine motor impairment was related to low FA values in the internal and external capsule and superior fasciculus. Eight VLBW children with inattention symptoms or a diagnosis of ADHD had significantly lower FA values in several areas. Mild social deficits correlated with reduced FA values in the external capsule and superior fasciculus. We conclude that DTI was able to detect differences in FA between VLBW adolescents and controls in several white matter areas at risk of periventricular leucomalacia in VLBW newborns. Our results show that low FA values in these areas were associated with perceptual, cognitive, motor and mental health impairments. These conclusions indicate that perinatal injury of white matter tracts persist with clinical significance in adolescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Anisotropy
  • Attention Deficit Disorder with Hyperactivity / diagnosis
  • Attention Deficit Disorder with Hyperactivity / pathology
  • Attention Deficit Disorder with Hyperactivity / psychology
  • Brain / pathology
  • Brain Diseases / diagnosis*
  • Brain Diseases / pathology
  • Brain Diseases / psychology
  • Cognition / physiology
  • Diffusion Magnetic Resonance Imaging / methods*
  • Female
  • Follow-Up Studies
  • Humans
  • Infant, Newborn
  • Infant, Premature
  • Infant, Very Low Birth Weight*
  • Intelligence Tests
  • Male
  • Motor Activity / physiology
  • Perception / physiology
  • Psychological Tests
  • Psychomotor Performance