PHOX2A is a paired-like homeodomain transcription factor that participates in specifying the autonomic nervous system. It is also involved in the transcriptional control of the noradrenergic neurotransmitter phenotype as it regulates the gene expression of tyrosine hydroxylase and dopamine-beta-hydroxylase. The results of this study show that the human orthologue of PHOX2A is also capable of regulating the transcription of the human alpha3 nicotinic acetylcholine receptor gene, which encodes the ligand-binding subunit of the ganglionic type nicotinic receptor. In particular, we demonstrated by chromatin immunoprecipitation and DNA pulldown assays that PHOX2A assembles on the SacI-NcoI region of alpha3 promoter and, by co-transfection experiments, that it exerts its transcriptional effects by acting through the 60-bp minimal promoter. PHOX2A does not seem to bind to DNA directly, and its DNA binding domain seems to be partially dispensable for the regulation of alpha3 gene transcription. However, as suggested by the findings of our co-immunoprecipitation assays, it may establish direct or indirect protein-protein interactions with Sp1, thus regulating the expression of alpha3 through a DNA-independent mechanism. As the alpha3 subunit is expressed in every terminally differentiated ganglionic cell, this is the first example of a "pan-autonomic" gene whose expression is regulated by PHOX2 proteins.