The distal nephron and colon are the primary sites of regulation of potassium (K(+)) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K(+) depending on the metabolic needs of the organism. In the healthy adult kidney, K(+) secretion predominates over K(+) absorption. Baseline K(+) secretion occurs via the apical low-conductance secretory K(+) (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K(+) secretion. The K(+) retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K(+) channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K(+) absorption. Both luminal and peritubular factors regulate the balance between K(+) secretion and absorption. Perturbation in any of these factors can lead to K(+) imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K(+) transport in the maturing kidney.