Nucleoside transporters (NTs) comprise 2 widely expressed families, the equilibrative nucleoside transporters (diffusion-limited channels) and concentrative nucleoside transporters (sodium-dependent transporters). Because of their anatomic position at the blood-tissue interface, vascular NTs are in an ideal position to influence vascular nucleoside levels, particularly adenosine, which among others plays an important role in tissue protection during acute injury. For example, endothelial NTs contribute to preserving the vascular integrity during conditions of limited oxygen availability (hypoxia). Indeed, hypoxia-inducible factor-1-dependent repression of NTs results in enhanced extracellular adenosine signaling and thus attenuates hypoxia-associated increases in vascular leakage. In addition, vascular NTs also contribute to cardiac ischemic preconditioning, coronary vasodilation, and inhibition of platelet aggregation. Moreover, vascular nucleoside uptake via NTs is important for nucleoside recovery, particularly in cells lacking de novo nucleotide synthesis pathways (erythrocytes, leukocytes). Taken together, vascular NTs are critical in modulating adenosine-mediated responses during conditions such as inflammation or hypoxia.