Biopolymer blends between collagen and chitosan have the potential to produce cell scaffolds with biocompatible properties. However, the relationship between the molecular weight of chitosan and its effect on physical and biological properties of collagen/chitosan scaffolds has not been elucidated yet. Porous scaffolds were fabricated by freeze-drying the solution of collagen and chitosan, followed by cross-linking by dehydrothermal treatment. Various types of scaffolds were prepared using chitosan with various molecular weights and blending ratios. Fourier transform infrared spectroscopy proved that collagen and chitosan scaffolds at all blending ratios contained mainly electrostatic interactions at the molecular level. The compressive modulus decreased with increasing the concentration of chitosan. Equilibrium swelling ratios of approximately 6-8, determined in phosphate-buffered saline at physiological pH (7.4), were found in case of collagen-dominated scaffolds. The lysozyme biodegradation test demonstrated that the presence of chitosan, especially the high-molecular-weight species, could significantly prolong the biodegradation of collagen/chitosan scaffolds. In vitro culture of L929 mouse connective tissue fibroblast evidenced that low-molecular-weight chitosan was more effective to promote and accelerate cell proliferation, particularly for scaffolds containing 30 wt% chitosan. The results elucidated that the blends of collagen with low-molecular-weight chitosan have a high potential to be applied as new materials for skin-tissue engineering.