Previously, several studies have demonstrated changes in the levels of small heat shock proteins (sHSP) in the transgenic mouse models of familial amyotrophic lateral sclerosis (fALS) linked to mutations in Cu/Zn superoxide dismutase. Here, we compared the expression of sHSPs in transgenic mouse models of fALS, Parkinson's disease (PD), dentato-rubral pallido-luysian atrophy (DRPLA) and Huntington's disease (HD); where the expression of mutant cDNA genes was under the transcriptional regulation of the mouse prion protein promoter. These models express G37R mutant Cu/Zn superoxide dismutase (SOD1G37R; fALS), A53T mutant alpha-synuclein (alpha-SynA53T; PD), full-length mutant atrophin-1-65Q, and htt-N171-82Q (huntingtin N-terminal fragment; HD). We found that the levels and solubilities of two sHSPs, Hsp25 and alpha B-crystallin, were differentially regulated in these mice. Levels of both Hsp25 and alpha B-crystallin were markedly increased in subgroups of glias at the affected regions of symptomatic SODG37R and alpha-SynA53T transgenic mice; abnormal deposits or cells intensely positive for alpha B-crystallin were observed in SODG37R mice. By contrast, neither sHSP was induced in spinal cords of htt-N171-82Q or atrophin-1-65Q mice, which do not develop astrocytosis or major motor neuron abnormalities. Interestingly, the levels of insoluble alpha B-crystallin in spinal cords gradually increased as a function of age in nontransgenic animals. In vitro, alpha B-crystallin was capable of suppressing the aggregation of alpha-SynA53T, as previously described for a truncated mutant SOD1. The transgenes in these mice are expressed highly in astrocytes and thus our results suggest a role for small heat shock proteins in protecting activated glial cells such as astrocytes in neurodegenerative diseases.