Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway

J Cell Physiol. 2007 Jul;212(1):236-43. doi: 10.1002/jcp.21022.

Abstract

Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.

MeSH terms

  • Animals
  • Blood-Brain Barrier
  • Brain / metabolism
  • Cell Line, Tumor
  • Dogs
  • Endothelial Cells / metabolism
  • Gene Expression Regulation
  • Male
  • Mice
  • Oxygen / metabolism
  • Permeability
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Swine
  • Vascular Endothelial Growth Factor Receptor-1 / metabolism*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism*

Substances

  • Phosphatidylinositol 3-Kinases
  • Vascular Endothelial Growth Factor Receptor-1
  • Vascular Endothelial Growth Factor Receptor-2
  • Proto-Oncogene Proteins c-akt
  • Oxygen