As a major negative regulator of p53, the MDM2 oncogene plays an important role in carcinogenesis and tumor progression. MDM2 promotes p53 proteasomal degradation and negatively regulates p53 function. The mechanisms by which the MDM2-p53 interaction is regulated are not fully understood, although several MDM2-interacting molecules have recently been identified. To search for novel MDM2-binding partners, we screened a human prostate cDNA library by the yeast two-hybrid assay using full-length MDM2 protein as the bait. Among the candidate proteins, ribosomal protein S7 was identified and confirmed as a novel MDM2-interacting protein. Herein, we demonstrate that S7 binds to MDM2, in vitro and in vivo, and that the interaction between MDM2 and S7 leads to modulation of MDM2-p53 binding by forming a ternary complex among MDM2, p53 and S7. This results in the stabilization of p53 protein through abrogation of MDM2-mediated p53 ubiquitination. Consequently, S7 overexpression increases p53 transactivational activities, induces apoptosis, and inhibits cell proliferation. The identification of S7 as a novel MDM2-interacting partner contributes to elucidation of the complex regulation of the MDM2-p53 interaction and has implications in cancer prevention and therapy.