Assessment of developmental toxicity of vorinostat, a histone deacetylase inhibitor, in Sprague-Dawley rats and Dutch Belted rabbits

Birth Defects Res B Dev Reprod Toxicol. 2007 Feb;80(1):57-68. doi: 10.1002/bdrb.20104.

Abstract

Background: The developmental toxicity potential of vorinostat (suberoylanilide hydroxamic acid [SAHA], ZOLINZA), a potent inhibitor of histone deacetylase (HDAC), was assessed in Sprague-Dawley rats and Dutch Belted rabbits. HDAC inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation, and apoptosis of tumor cells. Range-finding studies established oral dose levels of 5, 15, or 50 mg/kg/day and 20, 50, or 150 mg/kg/day in rats and rabbits, respectively.

Methods: Animals were dosed on Gestation Days 6-20 or 7-20, respectively, with litter/fetal parameters evaluated on GD 21 and 28, respectively. Separate studies evaluated toxicokinetic parameters at the mid- and high-dose levels.

Results: There was no maternal toxicity observed at the highest dose levels; however, hematology and serum biochemistry changes were characterized in the range-finding studies. Vorinostat did not induce morphological malformations in either rat or rabbit fetuses. In rats, drug-related developmental toxicity was observed only in the high-dose group and consisted of markedly decreased fetal weight and increases in fetuses with a limited number of skeletal variations. In rabbits, drug-related developmental toxicity was also observed only in the high-dose group and consisted of slightly decreased fetal weight and increases in fetuses with a short 13th rib and incomplete ossification of metacarpals. Maternal exposures to vorinostat based on AUC and Cmax values were comparable at the high-dose levels of both species. Rabbits tolerated higher dosages probably due to more extensive metabolism. Maternal concentrations of vorinostat were approximately 1,000-fold above the known in vitro HDAC inhibitory concentration.

Conclusions: Review of previous work with valproic acid, another HDAC inhibitor, suggest that the developmental toxicity profiles of these 2 compounds are not the result of HDAC inhibition but involve other mechanisms.

MeSH terms

  • Abnormalities, Drug-Induced*
  • Animals
  • Body Weight / drug effects
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / toxicity*
  • Female
  • Fetus / drug effects*
  • Histone Deacetylase Inhibitors*
  • Hydroxamic Acids / pharmacokinetics
  • Hydroxamic Acids / toxicity*
  • Pregnancy
  • Rabbits
  • Rats
  • Rats, Sprague-Dawley
  • Vorinostat

Substances

  • Enzyme Inhibitors
  • Histone Deacetylase Inhibitors
  • Hydroxamic Acids
  • Vorinostat