Rhodium nanoparticles from cluster seeds: control of size and shape by precursor addition rate

Nano Lett. 2007 Mar;7(3):785-90. doi: 10.1021/nl070035y. Epub 2007 Feb 9.

Abstract

The size-tunable synthesis of poly(vinylpyrrolidone)-stabilized cuboctahedral rhodium nanoparticles with mean diameters ranging between 3-7 nm and multipod structures was accomplished using seeded growth methods. Isotropic PVP-capped 2.9 nm seeds were prepared by ligand exchange on rhodium-triphenylphosphine metal-organic clusters. Quantitative investigation of reaction parameters in ethylene glycol revealed that size and shape could be controlled at a single reaction temperature of 120 degrees C. The rate of rhodium monomer addition was found to be critical for monodispersity and shape control, regardless of thermodynamic factors. Solvent viscosity, varied by changing the polyol solvents, indicated that autocatalytic addition kinetics are responsible for isotropic versus anisotropic growth.