Objective: Determining renal resistive index (RI) in the setting of renal artery stenosis may predict which patients benefit from revascularization. Renal duplex ultrasonography (RDUS) is the traditional method of assessing RI, but it is not available in most invasive endovascular laboratories. Conversely, endovascular techniques to assess RI are available but not well validated. The primary goal was to determine if an invasive approach using an endovascular Doppler flow wire correlates with RI assessment using traditional noninvasive RDUS.
Methods: In a single-center prospective trial, patients were enrolled if they had known or suspected renovascular disease. A Doppler flow wire was placed in multiple segments of the renal artery, and peak (PSV) and end-diastolic velocities (EDV) were measured. RI was calculated using the formula: RI = [1 - (EDV/PSV)] x 100. Similarly, RI was also derived using standard RDUS. All patients underwent both RI techniques before any revascularization procedure. Secondary end points included assessing the correlation for pole-to-pole renal length assessment and PSV and EDV velocities using both invasive and noninvasive techniques. Pearson correlation coefficient calculations were used to determine degree of correlation.
Results: The study enrolled 20 patients, and 35 renal arteries were studied. Overall, Pearson correlation coefficient for invasive vs noninvasive RI assessment was 0.86 (95% confidence interval [CI], 0.73 to 0.93). The r values were 0.43 (95% CI, 0.11 to 0.67) for pole-to-pole renal length, 0.66 (95% CI, 0.54 to 0.76) for PSV, and 0.61 (95% CI, 0.48 to 0.72) for EDV determination. No major complications occurred during this study. Average time to perform invasive Doppler assessment was 10.4 +/- 7.4 minutes per artery.
Conclusions: Invasive RI assessment using an endovascular flow wire technique correlates well with traditional noninvasive RDUS. A moderate statistical correlation also exists for pole-to-pole renal length, PSV, and EDV determinations. The procedure is safe and can be performed rapidly.