The synthesis of diarylmethanols via the reduction of a range of substituted benzophenone and benzoylpyridine derivatives with ketoreductase enzymes (KREDs) has afforded chiral products with high yield (>90%) and ee (up to >99%). Ortho, meta, and para substitutions with a variety of electron-donating, electron-withdrawing, and halogen groups were examined. Substitution at the ortho position and/or highly electronically dissymmetric molecules were not required for good selectivity, as is the case with conventional chemical catalyst reductions. [reaction: see text].