Irreversible myocardial injury: assessment with cardiovascular delayed-enhancement MR imaging and comparison of 1.5 and 3.0 T--initial experience

Radiology. 2007 Mar;242(3):735-42. doi: 10.1148/radiol.2423060299. Epub 2007 Jan 5.

Abstract

Purpose: To prospectively compare visualization and quantification of irreversible myocardial injury in patients with chronic myocardial infarction at 1.5- and 3.0-T magnetic resonance (MR) imaging.

Materials and methods: The institutional research ethics committee approved the study. Participants gave written informed consent. Sixteen male patients (mean age, 66 years +/- 13 [standard deviation]) with myocardial infarction were imaged with the same sequence by the same operator at 1.5 and 3.0 T. After cine imaging, a bolus of gadodiamide was administered. Short-axis images of entire left ventricle (LV) were acquired with a breath-hold T1-weighted segmented inversion-recovery turbo fast low-angle shot (FLASH) sequence. Agreement for myocardial hyperenhancement (HE) mass between field strengths was assessed with Bland-Altman method; agreement for detection and transmural extent of HE was assessed with kappa statistics. Intra- and interobserver reproducibility of mass and transmural extent of HE were assessed at 1.5 and 3.0 T.

Results: Bland-Altman analysis revealed no systematic bias (mean difference, 0.2 g; 95% confidence interval: -0.7 g, 1.2 g) and acceptable limits of agreement (-3.3 to 3.8 g) between field strengths for HE mass. HE mass measurements were strongly correlated (R(2) = 0.99); there was no significant difference in measurements at 1.5 and 3.0 T (28.1 g +/- 15.7 [22.6% +/- 10.9 of LV mass] vs 27.8 g +/- 15.7 [22.3% +/- 10.7 of LV mass], respectively; P = .599). For all segments, there was a high degree of agreement for HE detection (kappa = 0.90) and transmural grade (kappa = 0.79) between field strengths. Intra- and interobserver variability were low between both field strengths. Initial inversion time selected to null the signal of normal myocardium at 3.0 T was 57 msec +/- 20 longer than at 1.5 T (P < .01).

Conclusion: By using the same turbo FLASH MR pulse sequence, there was strong agreement in mass and transmural extent of myocardial HE between 1.5 and 3.0 T.

Publication types

  • Comparative Study

MeSH terms

  • Aged
  • Chronic Disease
  • Contrast Media / administration & dosage
  • Gadolinium DTPA / administration & dosage*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Myocardial Infarction / complications
  • Myocardial Infarction / diagnosis*
  • Pilot Projects
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Ventricular Dysfunction, Left / diagnosis*
  • Ventricular Dysfunction, Left / etiology

Substances

  • Contrast Media
  • gadodiamide
  • Gadolinium DTPA