CXCR1 and CXCR2 activation and regulation. Role of aspartate 199 of the second extracellular loop of CXCR2 in CXCL8-mediated rapid receptor internalization

J Biol Chem. 2007 Mar 2;282(9):6906-15. doi: 10.1074/jbc.M610289200. Epub 2007 Jan 4.

Abstract

CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Aspartic Acid
  • Calcium Signaling
  • Cell Line, Tumor
  • Endocytosis*
  • Humans
  • Interleukin-8 / metabolism*
  • Kinetics
  • Mutagenesis
  • Protein Structure, Secondary
  • Rats
  • Receptors, Interleukin-8A / metabolism*
  • Receptors, Interleukin-8B / metabolism*
  • Transfection

Substances

  • Interleukin-8
  • Receptors, Interleukin-8A
  • Receptors, Interleukin-8B
  • Aspartic Acid