We previously reported that several DNA fragments from human prostate-specific membrane antigen (hPSM), mouse prostatic acid phosphatase (mPAP), and human prostate-specific antigen (hPSA) genes were selected and fused to create a novel hPSM-mPAP-hPSA fusion gene (named 3P gene), and human secondary lymphoid tissue chemokine (SLC), 3P, and human IgG Fc genes were inserted into pcDNA3.1 to construct a DNA vaccine, designated pSLC-3P-Fc. In this report, to establish a more efficient treatment for immunotherapy against prostate cancer, the construct was transfected into B16F10 to generate gene-modified tumor cell vaccine (named B16F10-SLC-3P-Fc). In poorly immunogenic B16F10 mouse melanoma model, the immunization with B16F10-SLC-3P-Fc resulted in a strong antitumor response and 50% of tumor-bearing mice achieved long-term survival (>120 days). In vivo depletion of lymphocytes indicated that CD8(+) T cells were involved in the direct tumor killing, whereas CD4(+) T lymphocytes were required for the induction of CD8(+) CTL response in B16F10-SLC-3P-Fc-immunized mice. Splenocytes from B16F10-SLC-3P-Fc-immunized mice specifically recognized and lysed PSM, PAP, PSA, and 3P expressing tumor cells. The combined therapy of B16F10-SLC-3P-Fc plus anti-B7-H1 MAbs further enhanced the immune response. Rechallenge experiment showed that a persistent memory response was successfully induced by the combined therapy. These observations suggest pSLC-3P-Fc-modified tumor cells could serve as a vaccine against prostate cancer, and the therapy combined with anti-B7-H1 MAbs further enhanced the antitumor immune response.