Formed during the cooking of meat, the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4-5-b]pyridine (PhIP) is mutagenic and carcinogenic. Although the metabolism and mutational effects of PhIP are well defined, the early cellular and genomic events by which it can induce neoplastic transformation are not yet fully characterised. These early cellular responses to genotoxic doses of PhIP were examined in a human mammary epithelial cell, MCF10A. Using Western blotting, PhIP was shown to induce expression of the DNA damage response proteins p53 and p21(WAF1/CIP1), and to inhibit cell growth while activating G1 cell cycle checkpoint, a consequence of PhIP-induced DNA damage. Using low doses of PhIP (previously shown to activate oestrogenic signalling), PhIP increased proliferation in the oestrogen receptor (ER)-negative MCF10A cell line and to activate the mitogen-activated protein kinase (MAPK) pathway. Inhibition of this pathway significantly reduced the PhIP-induced cell growth of MCF10A cells. The work presented here suggests that, further to its genotoxic properties, at levels close to human exposure PhIP stimulates cellular signalling pathways that are linked to the promotion and progression of neoplastic disease. It is possible that a combination of these DNA damaging and growth promoting properties provide a mechanism for the tumourigenicity of PhIP, and may be key determinants for the tissue specificity of PhIP-induced carcinogenesis.